
Minesweeper Game

Author: Piotr Copek

Short description of the game

Single-player puzzle game which requires players to eliminate mines on a grid without

tripping any. The field for the game is a square grid which contains mines in some of its

squares. These squares are uncovered by the player and if one happens to contain a

mine then the game ends immediately. If a square does not have a mine, it reveals a

number indicating how many neighboring squares have them. The numbers are used by

the player to identify where the bombs may be through marking them. The aim of winning

this game is to uncover all squares without bombs inside them.

Classes Overview

Cell

The Cell class is used to represent a single cell on a Minesweeper grid.

Properties

• is_bomb – a boolean flag that indicates if the cell is a bomb.

• is_marked – a boolean flag used to indicate if a cell has been flagged by the

player as a bomb.

• is_revealed – a boolean flag that shows if the cell has already been revealed.

• bombs_around – an integer counter for the number of bombs placed around the

cell.

Methods

• mark_as_bomb() – toggles the is_bomb state if it hasn’t been toggled already.

• toggle_mark_flag() – toggles the is_marked flag.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



• reveal() – sets the is_revealed flag to true.

• update_counter() – adds 1 to the bombs_around counter.

Board

The Board class is responsible for managing the entire Minesweeper game.

Properties

• board – 2D vector of Cell objects.

• width – the width of the board.

• height – the height of the board.

• bomb_amount – the number of bombs on the board.

• first_x , first_y – coordinates used to store the first move played by the player.

Methods

• create_board() – initializes the board with Cell instances and sets up the

graphical user interface.

• count_bombs(int x, int y) – counts the number of bombs around a cell.

• random_bomb_placement() – randomly places bombs on the board, ensuring that

the first move is always safe.

• get_user_move() – gathers the user input including row, column, and mode.

• verify_input() – checks the validity of user input.

• update_board() – executes the user’s move and updates the state of the game

board.

• handle_first_mode(Board &board, Cell &cell, int row, int column) – handles

the user’s action to reveal a cell.

• show_around(int row, int column) – shows the cells around a given cell,

recursively searching for empty cells.

• handle_second_mode(Cell &cell) – handles marking and un-marking a cell as a

bomb.

• handle_win_conditions() – verifies if the player has correctly marked all bombs

and won the game.

• handle_lose_condition() – reveals all cells on the board when the game is lost.



GUI

The GUI class is responsible for displaying the current state of the board to the terminal.

Properties

• board – a 2D vector of Cell objects.

• fancy_print – a copy of board .

Methods

• print_board(const Board &board) – prints the fancy_print to the console.

• clear_terminal() – clears the screen of the console.

• welcome_screen() – displays the welcome message.

• end_screen() – displays the end message.

Player

The Player class is responsible for handling player interactions and input.

Methods

• player_move(int board_x, int board_y) – prompts the player to input the row,

column, and mode of their move. Returns a tuple of (row, column, mode) .

• verify_input(int &input, const std::string &prompt, int min, int max) –

prompts the user with a message to input a value. Checks if the input is a valid

integer within the specified range. Returns true if the input is valid; otherwise, it

prompts again until a valid input is provided.

• get_board_dimensions() – prompts the player to input the width and height of the

game board. Returns a tuple of (width, height) .

• play_again() – retrieves if the player wants to play again.

Randomizer

The Randomizer class provides methods for generating random numbers within specific range.

Properties

• gen – a Mersenne Twister random number generator initialized with a seed based

on the current time.



Methods

• RandomNumberGenerator() – constructor that initializes the random number

generator with a seed based on the current time.

• get_random_number(int min, int max) – generates and returns a random integer

in the given range.

Project showcase

Welcome screen

Dimensions of the board

Only integers in range 5 to 50 are accepted. Incorrect input won`t be accepted and program

will prompt user to enter correct value.



Game

After entering valid input the game will start. The empty board will be printed and user will be

asked for first move.



If invalid string is inserted the user will be prompted again. User can`t input float, double,

letters and special characters.

After entering correct integers the game will begin. The bombs will be placed randomly on

board also ensuring the bomb won`t lay on cell which has been chosen as the first move.

Example of the board after entering 4th row and 4th column:



Next moves have two variants - revealing cell or (un)marking bomb.

If we choose 2nd option, flag will appear on the selected cell.



After trying to reveal cell on which bomb is placed the game will end, showing the fully

revealed board and asking for new game.

After selecting "n" as an option the game will exit with ascii art of bomb, otherwise program will

ask for new board dimensions and start new game.




	Minesweeper Game
	Author: Piotr Copek
	Short description of the game
	Classes Overview
	Cell
	Properties
	Methods

	Board
	Properties
	Methods

	GUI
	Properties
	Methods

	Player
	Methods

	Randomizer
	Properties
	Methods


	Project showcase
	Welcome screen
	Dimensions of the board
	Game



