
Computer
programming
project report

Author: Piotr Copek
Date: April 8, 2025

Teacher: dr inż. Michał Piela

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

1. Chess Project Overview
• Key Specifications

2. User Manual
• Running from Source Code

3. Execution Examples
4. Internal Specifications

• Classes
• Programming Techniques
• Class Hierarchy
• Algorithms
• Program Operation

5. Testing
6. Conclusions
7. Documentation
8. Sources

Chess
This project involves developing a fully functional chess game using Python and the
customtkinter library for the graphical interface. The game follows standard chess rules,
including special moves like castling, en passant, and pawn promotion, while providing a
customizable user experience through themes, fonts, and colors.

Key Specifications

1. Game Logic
• Move Validation: Enforces standard chess rules.
• Special Moves:

◦ Castling (kingside/queenside).
◦ En passant captures.
◦ Pawn promotion (to Queen/Rook/Bishop/Knight).
◦ Two squares at first pawn move.

• Game State Detection: Auto-check for checkmate/stalemate.
Game logic was built with accuracy and extensibility in mind. All special rules and
conditions are tested. The system separates logic from visuals, which simplifies testing
and debugging. Handling edge cases like en passant or castling required attention to
details and showcases deeper understanding of chess rules.

2. User Interface
• Interactive Board:

◦ Legal moves highlighted on click.
◦ Visual feedback for captures/checks.

• Audio Feedback:
◦ Play sound effects for moves.

• Move History: Logs moves in algebraic notation.
• Notifications: Displays alerts for game endings and information about

successfulness of applying changes, saving games and loading them.
• Audio: Sound effects for moves/captures (threaded playback).

In GUI applications it really important to keep everything simple but yet handling complex
behaviors. User has to know where and how to perform specific actions. To ensure that
user interface is clear I tested app among my friends to receive users feedback.

3. Customization
• Themes: Swap piece/assets styles.
• Color Picker: Adjust colors via Settings .
• Fonts: Supports custom .ttf fonts.

To create more unique application I decided to add a lot of customization options. The way
of implementing fully customizable app is also great way to improve in writing software
that is really flexible and easy to maintain as everything has to be centralized and ready to
be reused in different parts of the codebase.

4. Technical Features
• OOP Design:

◦ Board (2D grid of Cell objects).
◦ Piece hierarchy (Pawn, Knight, ...).

• Modularity:
◦ Separated GUI (customtkinter) from game logic.
◦ Configurable via config.ini and Settings menu.

Object oriented programming is key to create a reuseable and flexible software. Allows to
easily create changes during development. Modularity of the project allows to easily add
new features and modify already existing logic or features.

5. Dependencies
• Python 3.x, customtkinter , Pillow , sounddevice , soundfile .

All dependencies were carefully selected to match the goals of the project. Lightweight
and modern libraries like customtkinter help keep the interface clean and responsive,
while sounddevice ensures seamless audio experience. The project avoids unnecessary
bloat, making it easy to run and maintain.

User manual

Running from source code

1. Clone repository
2. Navigate to project directory
3. Creating virtual environment is recommended. python -m venv .venv
4. Install dependencies pip install -r requirements.txt

5. Run application python .\src\main.py

Execution examples

Main Chess Board

Settings Menu - Themes and Fonts

Loading Screen

Checkmate

Stalemate

Saves screen

Color picker

Saving pop-up

Internal specifications

Classes
All classes play key role in app.

MovesRecord(ctk.CTkFrame)

Class handling recording the moves during playtime. Class stores both players moves in lists
and displays notation in two boxes dedicated for each player.

Relationship with other classes:

• used by Board to pass the current move to it.

Important methods:

• __init__ - properly loads creates menu with clickable elements.
• record_move(self, moved_piece: Piece, previous_coords: tuple[int, int] | None=None,

 capture: bool=False, castle: str | None=None, check: bool=False,

 checkmate: bool=False, promotion: str='') -> None - creates proper notation for the
move and places it in correct frame.

Saves(ctk.CTkFrame)

Class handles saving, loading and parsing the saves. Saves are located in saves directory
and are created in .json extension for easy readability and allows for creating custom saves.

Relationship with other classes:

• Used in Options which is class handling opening all user available menus and options.
• Inherits from CTkFrame which is widget frame from customtkinter .

Important methods:

• save_game_to_file(board) -> bool - saves game to .json file.
• show_all_saves(self, board) -> None - shows all saves in dedicated widget.
• load_save(self, event: Any, board, file_name: str) -> None - helper function calling all

necessary functions to load the game from save. Notifications will indicate if it was
successful or not.

Options(ctk.CTkFrame)

Class displaying all options available for the user:

• settings
• restart game
• save game
• load game from save

Handles interactions with them and closing them as well.

Relationship with other classes:

• Invokes Saves , Settings
• Uses Board object to access they methods

Important methods:

• __init__ - properly loads and creates menu with clickable elements.
• setting_button(self) -> None - setups setting button. After clicking setting menu will be

displayed.
• replay_button(self) -> None - button linked to Board object invoking restart method

from Board to restart game.
• save_button(self) -> None - setups save button. After clicking save menu will be

displayed.
• load_saves_button(self) -> None - setups saves menu button. After clicking saves menu

will be displayed.

Settings(ctk.CTkFrame)

Class handling changes in user interface. user have option to change assets, colors, and fonts.

Application allows custom assets, but they have to be named properly, and fonts with only
 .ttf extension. In setting all option will be displayed as buttons which will handle the change
of the assets and saving the changes to the config file.

Relationship with other classes:

• Invokes ColorPicker after clicking color pipet in customization menu
• Used by Options

Important methods:

• __init__ - properly loads and creates menu with clickable elements.
• list_directories_os(path: str) -> list[str] - function displaying all directories.

Function acts as scanner for themes and fonts in assets folder.
• select_theme(self, choice: str, button: ctk.CTkButton) -> None - saves user chose

theme of the figures.
• open_file_explorer(path: str) -> None - opens file explorer foe easy access to assets

folder.
• select_font(self, font: str, button: ctk.CTkButton) -> None - saves user chose font to

config file.
• validation methods to validate color values, length of user input.
• change_colors(self) -> None - saves user chose color to config file.

SaveName(ctk.CTkTopLevel)

Input dialog handling naming the save file. Allows user to cancel the saving procedure. Class
is taking care of stopping the main window from user interactions.

Relationship with other classes:

• used by Saves after saving game was invoked.

Important methods:

• __init__ - properly loads and creates menu with clickable elements.
• get_save_name(self) -> str | None | bool - getter for user input from the entry widget,

returns string if name is valid, None if user decides to keep default save name and bool if
canceled with closing window with ❌.

• on_save_button(self) -> None - function validating user input for save name.

Notification(ctk.CTkFrame)

Class used for displaying user friendly messages with errors and game information. Frame
have appearing and disappearing animation for better user experience.

Relationship with other classes:

• used all across the application (eg. Board , MainWindow)

Important methods:

• __init__ - properly loads and creates notification with clickable elements.
• show_notification(self) -> None - shows the notification on the screen

ColorPicker(ctk.CTkTopLevel)

Custom color picker with rgb values sliders and entires, as well with hex entry. Provides live
preview of the selected color with values preview as well. User can accept the new color or
cancel the procedure of changing the color.

Relationship with other classes:

• used by Settings fo easy customization fo colors in app.

Important methods:

• __init__ - properly loads and creates menu with clickable elements.
• color_preview(self) -> None - creates preview widget for selected color
• validate_hex_color(value_if_allowed: str) -> bool validates user input to match hex

color encoding.
• validate_input(P: str) -> bool - validates user input on every ey release.
• convert_to_hex(self) -> str - converts RGB to hex.
• convert_to_r_g_b(self) -> tuple[int, int , int] - converts hex to RGB.
• get_color(self) -> str | None - returns valid hex value after closing the color picker

widget if selected color is valid None otherwise.

COLOR(StrEnum)

Enum holding all colors form config file. To avoid unpleasant long wait time of changing the
color of each widget the changes will only be visible after restarting the app with new colors
loaded in enum.

Relationship with other classes:

• used by all components of the application.

Important methods:

• enum has no methods itself but is loaded using custom StrEnum from dictionary taken
from config.ini using get_colors() -> dict .

def create_color_enum():

colors = get_colors()

capitalized_colors = {key.upper(): value for key, value in colors.items()}

return StrEnum('COLOR', capitalized_colors)

Piece

Abstract class with general implementation of the figures. Holds the asset image, color and
important flags. Ensures that the child class have implementation to handle moves. For
debugging purposes the __str__ function is overwritten with custom string:

Relationship with other classes:

• Parent class for every figure.

Important methods:

• __init__ - loads asset for the piece and setups all important data for the figure.
• check_possible_moves(self, color: str, checking: bool=False) - abstract method
• check_turn(self, current_color: str) -> bool - checks current color of figures to move.
• load_image(self, piece: str | None=None) -> None | ctk.CTkImage - loads correct image

from assets\{name_of_the_current_theme} directory.
• update_image(self) -> None - updates image of the figure (eg. used for en passant).
• __str__(self) -> str - string representation used for debugging.

Cell

Class handling actions inside specific cell and linking figure to the position on the board.

Relationship with other classes:

• Used in Board . Each cell in 2D list is an unique Cell object links the position on the
board to the figure.

• Cell holds Piece inside with information of which figure is in this position. Might be
 None .

Important methods:

• __init__ - holds position info, figure info, and board reference.
• on_click(self, event: Any) -> None - handles clicks on board and calls appropriate

functions from Board .
• update - updates figure asset in cell

Board

Class handling all cells and move related logic.

Relationship with other classes:

• Uses Cell in 2D list which links positions and figures on the board.
• Used in MainWindow

Important methods:

• __init__ - loads all important data, setups board and flags.
• determine_tile_color(pos: tuple[int, int]) -> str - determines color of the cell.
• create_board(self) -> list[list[Cell]] - creates representation of the board and

returns it.
• is_game_over(self) -> tuple[bool, bool] - checks if game is over and how it ended.
• handle_clicks(self, figure: piece.Piece, position: tuple[int, int]) -> None - handler

for the clicks before figure is selected.
• handle_move(self, position: tuple[int, int]) -> None - handler for moving the pieces.
• check_check(self, move_from: tuple[int, int], move_to: tuple[int, int]) -> bool -

checks for check of the king.
• handle_game_over(self, in_check: bool, promotion: bool,

 capture: bool, check: bool) -> None - decides what to do if game is over.
• restart_game(self) -> None

• load_board_from_file(self, file_info: dict) -> bool - loads board from parsed
information from config file.

Technics from classes
During development, I applied some of programming techniques from the course.

Regex

Regular expressions is powerful tool used to validate user input. It was used all across the
project, almost for every user input re library which is python version of regex is used. It
ensures that code will properly handle user input and wont cause errors or bugs in application.

File system

For loading gam assets I used os library. It has path module which have all necessary
functions to handle all file and directories actions. Library is used to get absolute path to assets
which is crucial for independently of device proper loading and using files or directories. Library
is also used to independently of operating system join paths - instead of hardcoding paths
 assets\\pawn_w.png which is windows specific i used os.path.join('assets', 'pawn_w.png) .

Threading

For better user experience it's crucial to have smooth and not freezing window. Threading
ensures seamless transitions through menus and loading assets. Threading is also used to
create in-app animations. Threading ensures that window wont freeze during changing assets/
fonts, performing algorithms or playing sound.

Modules

Modules are crucial part of python. To keep the project organized and readable, I divided the
code into multiple modules. Each module was responsible for a specific part of the application
like handling figures, saving the game, or managing the UI. This approach improves structure,
makes debugging easier, and allows for faster development.

Ranges

In many parts of the game logic, range() was used for iterating over board positions and
generating possible moves. It is especially useful in chess when checking rows, columns, or
diagonals step by step. Using range() allowed me to control iterations precisely, whether it
was looping forwards, backwards, or skipping certain positions. It made movement calculation
for pieces like rooks, bishops, and queens easier to implement and understand.

Class hierarchy

Algorithms
To fully implement chess game uses of algorithms is necessary. Path finding, checking at least
one move forward to ensure king safety and more.

Legal moves generator/checker

Each piece has its own implementation of checking possible moves. Another function checks if
this move will be legal - which means that player wont put their own king at risk of check. From
all possible moves generated by figure algorithm some squares might be sieved to ensure
legality of the taken move.

Path finding

Figures move uses something similar to raycasting to find paths that are not blocked by other
figures. All paths are hardcoded as a 2D vector acting as direction to check. Direction is
checked until some figure steps on its way or there is the end of the board.

End of game detection

Game will check every time if checkmate or stalemate occurred by analyzing if there exist such
move that can be performed bu current player. If there is no legal move game will check if king
is in check. If is then it is checkmate otherwise it's stalemate.

Validations of moves

• castle - validates if castle and king didn't move before and any of the squares that could
be used to castle aren't under attack.

• en passant - checks if the pawn that might be taken was taking first move.

Promotion

Checks if pawn is in the last possible row for its color. If this situation occurs the widget with
figures available will pop-up forcing player to choose one of four figures (Knight, Bishop, Rook
or Queen).

Program operation

Testing
Due to the complexity of the project, testing was done continuously during the implementation
phase. Each component was checked for edge cases and unexpected behavior. While
developing, several bugs were discovered that required deeper debugging and sometimes
refactoring core logic. Below are some examples of specific issues that were encountered and
how they were resolved.

Pawns problem

Each figure was tested for edge cases. During testing there was a bug with pawn. Pawn
couldn't cause checkmate even tho it was clearly a checkmate. To resolve the bug I had to
rewrite the function checking the game over and check.

def is_game_over(self) -> tuple[bool, bool]:

in_check = False

for row in self.board:

for cell in row:

if cell.figure and cell.figure.color == self.current_turn:

possible_moves = cell.figure.check_possible_moves(self.current_turn)

for move in possible_moves:

if not self.check_check(cell.figure.position, move):

return False, False

for row in self.board:

for cell in row:

if isinstance(cell.figure, piece.King) and (

cell.figure.color == self.current_turn

):

if self.check_check(cell.figure.position, cell.figure.position):

in_check = True

break

return True, in_check

Faulty check for game over was causing problems with pawns. To fix it i had to rewrite the
function to fit proper handling of checkmating with pawn.

def is_game_over(self) -> tuple[bool, bool]:

in_check = False

has_legal_moves = False

for row in self.board:

for cell in row:

if cell.figure and cell.figure.color == self.current_turn:

possible_moves = cell.figure.check_possible_moves(self.current_turn)

for move in possible_moves:

if not self.check_check(cell.figure.position, move):

has_legal_moves = True

break

if has_legal_moves:

break

if has_legal_moves:

break

king_position = self.get_king_position(self.current_turn)

in_check = self.is_under_attack(king_position, self.current_turn)

return (not has_legal_moves, in_check)

After rewriting function, everything was working properly including checkmating with pawn.

Threads problem

There was one overuse of threads that caused bug forcing user to close the application almost
every two tries of saving the game. The bug was annoying to find due to its randomness. But
after testing I found out that creating TopLevel window in customtkinter library on separate
thread was causing misbehavior on the main thread as not everything was handled properly.
After all it was really easy to fix but annoying to identify faulty code.

def save_game(self, event: Any) -> None:

threading.Thread(

target=Saves.save_game_to_file, args=(self.get_board_func(),)

).start()

Thread was sometimes destroying TopLevel window due to additional click on main app
window so i moved the task to the main thread and also started checking if saving the game
was successful.

def save_game(self, event: Any) -> None:

if Saves.save_game_to_file(self.get_board_func()):

Notification(self.master, 'Save was created successfully', 2, 'top')

Color picker widget

There was a minor oversight with updating hex value on changing RGB values in entries. This
required binding converting to hex function to <KeyRelease> action.

self.r_val_label.bind('<KeyRelease>', lambda e: self.update_hex(e))

self.g_val_label.bind('<KeyRelease>', lambda e: self.update_hex(e))

self.b_val_label.bind('<KeyRelease>', lambda e: self.update_hex(e))

def update_hex(self, event=None) -> None:

self.hex_val_label.delete(0, ctk.END)

self.hex_val_label.insert(0, f'{self.convert_to_hex()}')

def convert_to_hex(self) -> str:

return f'#{self.r_val:02x}{self.g_val:02x}{self.b_val:02x}'

This simple fix resolved the issue.

GUI related bugs

Sometimes i forgot to check if specific frame actually exists. This was causing some
 customtkinter errors. To resolve I started using type annotations with mypy static checker.
This helped with proper handling destroying and creating frames. These fixes was quite easy
and only required if else logic blocks.

Simplified example of bug:

import customtkinter as ctk

widget = None

widget.pack()

This can be rewritten in such way that is safe from bugs:

import customtkinter as ctk

widget: ctk.CTkFrame | None = None

if widget:

widget.pack()

else:

widget = ctk.CTkFrame(master)

Incorrect en passant handling

During final phase of writing application I started refactoring the code with optimizations and
cleanness in mind. Unfortunately by mistake I made additional indent to the function
responsible for resetting flag that indicates that pawn can be taken in this special move.

if isinstance(cell.figure, piece.Pawn):

if cell.figure.first_move and abs(self.previous_coords[0] - row) == 2:

cell.figure.moved_by_two = True

else:

cell.figure.moved_by_two = False

if cell.figure.promote():

promotion = True

self.reset_en_passant_flags(cell.figure.color)

One additional tab made big difference as user could choose any other figure to move and
 en_passant flag wouldn't reset. After analyzing refactored code i quickly found the issue using
some debug print statements.

if isinstance(cell.figure, piece.Pawn):

if cell.figure.first_move and abs(self.previous_coords[0] - row) == 2:

cell.figure.moved_by_two = True

else:

cell.figure.moved_by_two = False

if cell.figure.promote():

promotion = True

self.reset_en_passant_flags(cell.figure.color)

Other minor bugs

During the development process, I encountered many smaller bugs and issues, such as typos,
forgetting to call newly implemented methods, or skipping small but necessary adjustments
after adding new features. These kinds of human errors are quite common, especially when
working on a larger codebase. Fortunately, Python’s clear and descriptive error messages
made them easy to spot and debug quickly. Most of these problems were resolved within
minutes, and often helped highlight areas where the code could be made more robust or better
organized.

Conclusions
The chess project provided a valuable opportunity to apply object-oriented programming
principles in a complex, interactive application. Developing both the game logic and user
interface involved addressing various challenges, from implementing accurate move validation
and special chess rules, to ensuring a smooth and responsive user experience through the use
of customtkinter. The structure of the code evolved through extensive testing, which led to
improved clarity, reusability, and correctness. By solving issues such as faulty checkmate
detection and GUI instability caused by threading, the final project became not only functional
but also reliable. The project also reinforced the importance of thorough debugging, consistent
coding practices, and maintaining clear separation between logic and interface.

Documentation
Documentation was created using pdoc tool. Full documentation is available under this link
chess documentation.

Sources
• Fonts

◦ Tiny5 Regular https://fonts.google.com/specimen/Tiny5?query=tiny5
◦ Kode Mono Regular - https://fonts.google.com/specimen/

Kode+Mono?query=kode+mono
• Assets

◦ 16bit - https://bz-game.itch.io/pixel-art-chess-set
◦ normal - https://commons.wikimedia.org/wiki/Category:SVG_chess_pieces

https://chessdocumentation.pages.dev/
https://fonts.google.com/specimen/Tiny5?query=tiny5
https://fonts.google.com/specimen/Kode+Mono?query=kode+mono
https://fonts.google.com/specimen/Kode+Mono?query=kode+mono
https://bz-game.itch.io/pixel-art-chess-set
https://commons.wikimedia.org/wiki/Category:SVG_chess_pieces

	Computer programming project report
	Table of Contents
	Chess
	Key Specifications

	User manual
	Running from source code

	Execution examples
	Main Chess Board
	Settings Menu - Themes and Fonts
	Loading Screen
	Checkmate
	Stalemate
	Saves screen
	Color picker
	Saving pop-up

	Internal specifications
	Classes
	MovesRecord(ctk.CTkFrame)
	Relationship with other classes:
	Important methods:

	Saves(ctk.CTkFrame)
	Relationship with other classes:
	Important methods:

	Options(ctk.CTkFrame)
	Relationship with other classes:
	Important methods:

	Settings(ctk.CTkFrame)
	Relationship with other classes:
	Important methods:

	SaveName(ctk.CTkTopLevel)
	Relationship with other classes:
	Important methods:

	Notification(ctk.CTkFrame)
	Relationship with other classes:
	Important methods:

	ColorPicker(ctk.CTkTopLevel)
	Relationship with other classes:
	Important methods:

	COLOR(StrEnum)
	Relationship with other classes:
	Important methods:

	Piece
	Relationship with other classes:
	Important methods:

	Cell
	Relationship with other classes:
	Important methods:

	Board
	Relationship with other classes:
	Important methods:

	Technics from classes
	Regex
	File system
	Threading
	Modules
	Ranges

	Class hierarchy
	Algorithms
	Legal moves generator/checker
	Path finding
	End of game detection
	Validations of moves
	Promotion

	Program operation

	Testing
	Pawns problem
	Threads problem
	Color picker widget
	GUI related bugs
	Incorrect en passant handling
	Other minor bugs

	Conclusions
	Documentation
	Sources

