

Report from Exercise No 5

Performed on: 06.11.2024

Exercise Topic : Synchronous Sequential Circuits

Digital Circuit Theory - Laboratory
Academic year

Laboratory
exercises on

Mode of
studies

Field of studies Supervisor Group Section

2024/2025
Wednesday

SSI Informatics DP 1 1 11:45 – 13:15

Performed by:

Piotr Copek
Zuzanna Micorek

Introduction

In this report, we present the design and implementation of various synchronous sequential

circuits, each fulfilling a specific digital logic function. These tasks involved creating Moore

state diagrams, encoding states using binary values, and simplifying Boolean expressions for

state transitions and outputs through Karnaugh maps. Each circuit was built using either D or

JK flip-flops, NAND, and NOR gates, chosen according to the requirements of each design

task. This report summarizes our approach, challenges, and solutions, providing insights into

sequential circuit design and practical applications.

Task 2

Design a synchronous sequential circuit detecting than a binary 2-bit number corresponding to

the 2-bit words sent to the serial input X, is an odd number. The first bit of the word is assumed

to be MSB. Detection should cause the output to become set for the time not longer than one

clock period.

Solution

We started by drawing the Moore state diagram to represent the behavior of the sequential

circuit. Each state represented the progress through the bits of the 2-bit input, with transitions

based on the serial input X.

Figure 1 - Graph for Moore Machine implementation of task.

We encoded the states using binary values.

We constructed Karnaugh maps for the state transitions and a separate K-map for the output.

This allowed us to identify groups and simplify the Boolean expressions for the next states and

the output.

State → Q1Q2

S1 → 00
S2 → 01
S3 → 11

Figure 2 - K-maps obtained from graph used to obtain
solution for the task.

From the K-maps we obtained equations, which allowed us to build circuit based on D type flip-

flops and NAND gates:

First D flip-flop implemented with NAND gates:

First D flip-flop implemented with NAND gate:

D1 = Q1 ⋅ Q2 ⋅ x = Q1 ⋅ Q2 ⋅ x

Figure 3 - Implementation of task 2.

Summary

In this task, we designed a synchronous sequential circuit to detect odd 2-bit numbers using

flip-flops gates. We started with a Moore state diagram, encoded the states, used Karnaugh

maps for simplification, and chose D flip-flop. We successfully implemented the design, gaining

valuable insights into sequential circuit design and practical implementation.

Task 3

Design a synchronous sequential circuit detecting than a binary 2-bit number corresponding to

the 2-bit words sent to the serial input X, is an odd number. The first bit of the word is assumed

to be LSB. Detection should cause the output to become set for the time not longer than one

clock period.

D2 = x + Q1
n + Q2

n = x ⋅ Q1
n ⋅ Q2

n

Z = Q1
n

Solution

We constructed Karnaugh maps for the state transitions and a separate K-map for the output.

This allowed us to identify groups and simplify the Boolean expressions for the next states and

the output.

Figure 4 - Graph for Moore Machine implementation of task.

We encoded the states using binary values.

We constructed Karnaugh maps for the state transitions and a separate K-map for the output.

State → Q1Q2

S1 → 00
S2 → 01
S3 → 11
S4 → 10

Considering our design requirements, we chose the JK flip-flop as the most optimal flip-flop for

our circuit.

Figure 5 - K-maps obtained from graph used to obtain solution for the task.

From the K-maps we obtained equations, which allowed us to build circuit based on JK type

flip-flops, NAND and NOR gates:

J1 = x + Q2
n = x ⋅ Q2

n

K1 = Q2
n + x = Q2

n ⋅ x

J2 = Q1
n ⋅ x = Q1

n + x

K2 = Q1
n ⋅ x = Q1

n + x

Z = Q1
n ⋅ Q2

n = Q1
n ⋅ Q2

n

After transforming the expressions, we translated the expressions into the circuit diagram,

which was build during laboratories.

Figure 6 - Implementation of task 3.

Summary

In this task, we designed a synchronous sequential circuit to detect odd 2-bit numbers, with the

first bit being the LSB. We started with a Moore state diagram, encoded the states, used

Karnaugh maps for simplification, and chose the JK flip-flop as the optimal flip-flop. We

successfully implemented the design using both NAND and NOR gates, gaining valuable

insights into sequential circuit design and practical implementation.

Task 4

Design a synchronous parallel frequency divider with the filling of the signal equal 1/2. For the

values of programming signal equal 0 there should be obtained division by 2, for 1 by 4.

Solution

We started by creating a timing chart to represent the desired behavior of the frequency

divider. The chart illustrated the clock signal CLK and the corresponding outputs for different

programming signal p values.

Figure 7 - Timing chart for exercise 4 used to build circuit.

We selected JK flip-flops for their ability to toggle states, which is essential for frequency

division. This choice helped in designing a simple and efficient circuit.

When the programming signal p is 0, the first JK flip-flop (Q0) toggles on every clock pulse.

This configuration results in Q0 having half the frequency of the clock signal CLK.

When the programming signal p is 1, the second JK flip-flop (Q1) is added to the

configuration. Q1 toggles on every second pulse of Q0, resulting in Q1 having one-fourth the

frequency of the clock signal CLK.

We used NAND gates to control the toggling behavior of the flip-flops based on the

programming signal p.

Figure 8 - Implementation of task based on timing chart with use of JK flip-flops and
NAND gates.

Summary

In this task, we designed a synchronous parallel frequency divider using JK flip-flops and

NAND gates. We began by creating a timing chart to visualize the desired behavior, chose JK

flip-flops for their toggling ability, and configured the circuit for both division by 2 and division

by 4. By integrating NAND gates, we controlled the flip-flops based on the programming signal,

ensuring correct operation. This design effectively met the task requirements, providing a

practical implementation of a frequency divider with a 50% duty cycle.

Task 5

Design a synchronous parallel frequency divider with the smallest possible filling of the signal.

For the values of programming signals equal 0 there should be obtained division by 2, for 1 by

4.

Solution

We began by creating a timing chart to visualize the desired output waveforms. The chart

showed how the outputs Q0 and Q1 should behave in relation to the clock signal CLK for both

division by 2 and division by 4.

Figure 9 - Timing chart for exercise 4 used to build circuit.

We selected JK flip-flops for the design due to their ability to toggle states, which simplifies the

frequency division process.

When the programming signal p is 0, the first JK flip-flop (Q0) is set to toggle on every clock

pulse. This ensures that Q0 outputs a signal with half the frequency of the clock signal CLK,

achieving division by 2.

When the programming signal p is 1, the second JK flip-flop (Q1) is included in the

configuration. Q1 toggles on every second pulse of Q0, resulting in an output frequency that is

one-fourth of the clock signal CLK, achieving division by 4.

To minimize the duty cycle, we integrated NAND gates to control the flip-flops' toggling

behavior based on the programming signal p. The logic was designed to ensure that the

outputs Q0 and Q1 have the smallest possible duty cycle while maintaining the correct

frequency division.

Figure 10 - Implementation of task based on timing chart with use of JK flip-flops and
NAND gates.

Summary

In this task, we designed a synchronous parallel frequency divider with minimal signal duty

cycles. We began by creating a timing chart to illustrate the required output waveforms, chose

JK flip-flops for their toggling capability, and configured the circuit for division by 2 and division

by 4 based on the programming signal. By integrating NAND gates, we minimized the duty

cycles of the outputs while ensuring correct frequency division. This design effectively met the

task requirements, providing an efficient implementation of a frequency divider with the

smallest possible signal duty cycle.

Task 7

Design a synchronous circuit executing operation of multiplication by 2 of N-bit binary number,

sent to the serial input X starting from the least significant position.

Solution

We started by drawing a Moore state diagram to represent the behavior of the sequential

circuit.

Figure 11 - Graph for Moore Machine implementation of task.

We encoded the states using binary values.

We constructed Karnaugh maps for the state transitions and a separate K-map for the output.

This allowed us to identify groups and simplify the Boolean expressions for the next states and

the output.

State → Q1
nQ2

n

S1 → 00
S2 → 01
S3 → 11
S4 → 10

Figure 12 - K-maps obtained from graph used to obtain
solution for the task..

From the K-maps we obtained equations, which allowed us to build circuit based on D flip-

flops:

D1 = Q2
n

D2 = x

D flip-flops and NAND gates were employed to create the necessary control logic for the shift

register. This included managing the input signal and ensuring that the bits were correctly

shifted with each clock pulse.

Figure 12 - Implementation of task 7 using D flip-flops.

Summary

In this task, we designed a sequential circuit using a Moore state machine. We started by

creating a state diagram, encoding the states, and using Karnaugh maps for simplification. We

then selected D flip-flops and implemented the control logic using them and NAND gates as

well. This task enhanced our understanding of synchronous sequential circuit design and

practical implementation.

Z = Q1
n

Final Conclusions and Observations

In these tasks, we designed and implemented various sequential circuits to achieve specific

digital logic functions. We started by creating Moore state diagrams and encoding states using

binary values. We utilized Karnaugh maps to obtain Boolean expressions for both state

transitions and outputs. Different flip-flops, such as D and JK, were chosen based on the

requirements and practicality of each task, and the circuits were implemented with help of

using NAND and NOR gates to realize the logic. These exercises allowed us to gain practical

experience in sequential circuit design, from theory to real-world implementation.

