

Report from Exercise No 4

Performed on: 4.12.2024

Exercise Topic: Asynchronous sequential circuits

Digital Circuits Theory - Laboratory
Academic year

Laboratory
exercises on

Mode of studies Field of studies Supervisor Group Section

2024/2025
Wednesday

SSI Informatics DP 1 1 11:45 – 13:15

Performed by:

Piotr Copek
Zuzanna Micorek

Introduction

In this report, we present the design and implementation of various digital circuits aimed at

solving specific control problems. These tasks involved the use of Karnaugh maps to minimize

Boolean expressions and implement the desired functions efficiently. We employed different

configurations of logic gates and flip-flops to achieve the required control logic.

Task 1

Design a circuit controlling the switching of two pumps. The pumps P1 and P2 should be

switched on alternately (only one pump can work at a time) when water falls below the level of

the sensor x2 (i.e. when x2 = 0). Working pump should be switched off when the water level

exceeds the level of the sensor x1 (i.e. when x1 = 1). Assume that water level grows when

pumps are on, and that it decreases when none of pumps is working.

Solution

We started by creating a timing chart representing the behavior of the sensors x1, x2 and how

they affect the pumps.

Figure 1 - timing chart for task 1 with all possible combinations of inputs x1 x2.

From the timing chart we created a flow chart.

Figure 2 - flow chart derived from timing chart.

We created a truth table based on the inputs from sensors x1 and x2. This table included all

possible states of the system and the corresponding outputs.

Figure 3 - karnaugh map derived from flow chart.

State → q1q2

1, 2 → 00
3, 4 → 01
5, 6 → 11
7, 8 → 10

Figure 4 - encoded karnaugh map.

Figure 5 - groups for s-r flipflops.

From the Karnaugh maps we obtained functions for s-r flip-flops:

And for outputs:

We implemented the circuit using the flip-flop and output functions. The circuit used NAND,

NOR, and NOT gates to achieve the required logic.

s1 = x2q0

r1 = x2 q0

s0 = x1q0

r0 = q1x1

P1 = q1 + Q0

P2 = q1q0 = q1 + q0

Figure 6 - implementation of task 1.

Summary

This task involved designing a pump control circuit using s-r flip-flops. By analyzing the sensor

inputs and deriving the necessary logic, the circuit alternately switches the pumps based on

water level conditions. The use of Karnaugh maps ensured the logic was optimized.

Task 2

Design a circuit controlling the switching of two pumps. The pumps P1 and P2 should be

switched on alternately (only one pump can work at a time) when water falls below the level of

the sensor x2 (i.e. when x2 = 0). Working pump should be switched off when the water level

exceeds the level of the sensor x1 (i.e. when x1 = 1). Assume that water level grows when

pumps are on, and that it decreases when none of pumps is working.

Additional task - can not use any kind of flip-flops.

Solution

We started by creating a timing chart representing the behavior of the sensors x1, x2 and how

they affect the pumps.

Figure 7 - timing chart for task 1 with all possible combinations of inputs x1 x2.

From the timing chart we created a flow chart.

Figure 8 - flow chart derived from timing chart.

We created a truth table based on the inputs from sensors x1 and x2. This table included all

possible states of the system and the corresponding outputs.

Figure 9 - karnaugh map derived from flow chart.

Figure 10 - encoded karnaugh map.

Figure 11 - groups for feedback loops with taking hazard into consideration.

From the Karnaugh map we obtained input functions on which we applied De Morgan’s laws to

transform Boolean expression into a form that could be implemented with NAND gates. We

also obtained output functions.

We implemented the circuit using the derived logic functions. The circuit was constructed using

NAND gates and NOR gates.

Figure 12 - implementation of task 1 with additional requirement.

Summary

In this task, we designed a circuit to control the switching of two pumps without using any flip-

flops. This was achieved by implementing the logic functions from the truth table and Karnaugh

maps, utilizing NAND and NOR gates to accomplish the required logic.

Q1 = q0 x2 q1q0 q1q0

Q0 = q0 x2 q1q0 q1 q0

P1 = q1 + q0

P2 = q1 + q0

Task 3

Design a circuit controlling the operation of the inertial two-directional engine. The engine can

start to rotate only if it is stopped (RIGHT = 0, LEFT = 0, STOP = 1). The engine should start to

rotate in right direction (RIGHT = 1) when button R is pushed and it should keep rotating until

button S is pushed. Pushing the R or L button when engine rotates right should be ignored.

The engine should start to rotate in left direction (LEFT = 1) when button L is pushed and it

should keep rotating until button S is pushed. Pushing the L or R button when engine rotates

left should be ignored. Similarly pushing S button when engine is stopped should not change

its state. Pushing it when engine rotates in any direction should stop it by assigning outputs:

RIGHT = 0, LEFT = 0, STOP = 1. Since all input buttons are monostable radio ones, it is

assumed that only one of buttons S, L, R can be equal to one at a time.

Solution

We started by creating a flow chart, which includes transitions between states.

Figure 13 - flow chart used to solve task 3.

We encoded the states:

Then, we created a truth table based on the inputs (L, S, R) and current states.

Figure 14 - encoded karnaugh map for both next states (Q1Q2).

State → q1q0

S1 → 00
S2 → 01
S3 → 11

Figure 15 - karnaugh map for only Q1 with marked groups.

Figure 16 - karnaugh map for only Q0 with marked groups.

We derived functions for s-r flip-flops using Karnaugh maps:

From table below we obtained output functions:

Figure 17 - output table used to derive output functions.

s1 = q0xR

r1 = xS

s0 = xS

r0 = q1 xL

L = Q0

S = Q1Q0

R = Q1

We implemented the circuit using the derived functions. We used a combination of AND, OR,

and NOT gates, along with NAND gates.

Figure 18 - implementation of task 3.

Summary

This task involved designing a control circuit for an inertial two-directional engine. The circuit

ensures the engine starts and stops in the desired direction based on input, maintaining

specific states for rotation and stop conditions. The implementation used a combination of

basic logic gates and NAND gates.

Final Conclusions and Observations

In these tasks, we successfully designed various circuits for pump control and engine

operation. The designs included using flip-flops, avoiding flip-flops, and ensuring proper state

transitions based on sensor inputs and button presses. In each task we were creating truth

tables, deriving logic functions, and implementing the circuits. The implementation utilized a

combination of AND, OR, NOT, and NAND gates to achieve the desired logic, ensuring

efficient and practical solutions for the given problems.

