

Report from Exercise No 1

Performed on: 23.10.2024

Exercise Topic: Combinational Circuits

Digital Circuits Theory - Laboratory
Academic year

Laboratory
exercises on

Mode of studies Field of studies Supervisor Group Section

2024/2025
Wednesday

SSI Informatics KP 1 1 11:45 – 13:15

Performed by:

Piotr Copek
Zuzanna Micorek

Introduction

These circuit design tasks aimed to deepen our understanding of digital logic, Boolean

algebra, and practical circuit implementation. We focused on:

• Creating and analyzing truth tables, Karnaugh maps, and Boolean expressions.

• Building and observing circuits in a lab environment to bridge theory and practice.

• Troubleshooting issues encountered during circuit construction.

• Utilizing TTL Technology.

Task 2

Design a circuit that adds two 2-bit binary numbers (given in the natural binary code). When

the sum is a power of 3, the output should equal 0, and 1 otherwise.

• First, we enumerated all possible input combinations for two 2-bit binary numbers.

We listed each possible binary combination for these bits in a truth table.

• Next, we examined the sum of the inputs for each row in the truth table to

determine whether the sum is a power of 3 (1, 3). According to the task, if the sum

is a power of 3, the output should be 0; otherwise, it should be 1, based on those

conditions we assigned them properly in the truth table.

• Then we then transferred the values from the truth table to a Karnaugh map.

• Marking the biggest possible groups we obtained boolean expression from the K-

map:

• At the end of task-solving process we applied De Morgan’s laws to transform the

simplified Boolean expression into a form that could be implemented with NAND

gates:

OUT = b ⋅ d + b ⋅ d + a ⋅ c

[Figure 1] - Implementation of task number 2 on NAND gates.

With this solution, we successfully designed a circuit that adds two 2-bit binary numbers and

gives the correct output based on the given conditions. All gates were working properly, so we

didn't encounter any difficulties during implementation of this task.

Task 4

Design a circuit that multiplies two 2-bit binary numbers (given in the natural binary code).

When the product is a power of 2, the output should equal 0, and 1 otherwise.

• We began by listing all possible input combinations for two 2-bit binary numbers.

• Then we examined each product to determine whether it was a power of 2 (1, 2,

4). According to the task, the output should be 0 if the product is a power of 2, and

1 otherwise, based on that we assigned proper outputs in the truth table.

OUT = b ⋅ d ⋅ b ⋅ d ⋅ a ⋅ c

• Then we transferred the values from the truth table to a Karnaugh map.

• We derived boolean expression from the K-map:

• After obtaining a Boolean expression, we applied De Morgan’s laws to express it in

terms of NAND gates:

OUT = a ⋅ b + a ⋅ b + c ⋅ d + c ⋅ d

• Due to the limited availability of NAND gates, we used 4-input NAND gates to

perform negation. By connecting only one input to a 4-input NAND gate, it

functioned as a NOT gate which is a feature of the TTL technology.

[Figure 2] - Implementation of task number 4 on NAND gates.

For better visualization all 4-input NAND gates were replaced with 2-input NAND gates with

one of the inputs branched and connected to two inputs.

During the laboratories implementation, we encountered a problem where one of the 4-input

NAND gates did not perform the negation function as expected. This issue required

adjustments to ensure the correct operation of the circuit.

Task 6

Design 4-bit translator from Watts code into Gray+3 code.

• We began by listing all possible 4-bit combinations in Watts code. For each

combination, we calculated the corresponding 4-bit Gray+3 code. We wrote these

pairs in a truth table.

OUT = a ⋅ b ⋅ a ⋅ b ⋅ c ⋅ d ⋅ c ⋅ d

• We transferred the values from the truth table to a Karnaugh map for each of the

four output bits.

• Using the K-maps we obtained the Boolean expressions for each output bit.

Z3 = X3

• Next for each output bit, we applied De Morgan’s laws to express these functions

using NAND gates.

[Figure 3] - Implementation of task number 6 on NAND gates.

This approach led to a final circuit design that satisfies the task requirements, translating a

4-bit Watts code into Gray+3 code using only NAND gates.

Z2 = X0 + X1

Z1 = X1 + X0

Z0 = X2 ⋅ X1

Z3 = X3

Z2 = X0 ⋅ X1

Z1 = X1 ⋅ X0

Z0 = X2 ⋅ X1

Final conclusions and observations

In these tasks, we designed and implemented circuits to achieve specific digital logic functions.

We gained hands-on experience with creating truth tables, and using Karnaugh maps. We also

translated theoretical designs into practical implementations using TTL technology and NAND

gates. Through these exercises, we developed problem-solving skills and learned to

troubleshoot real-world issues, such as detecting and dealing with malfunctioning components.

