

Report from Exercise No 12

Performed on: 07.01.2025

Exercise Topic: Computer Aided Design for Circuit Development

Digital Circuits Theory - Laboratory
Academic year

Laboratory
exercises on

Mode of studies Field of studies Supervisor Group Section

2024/2025
Wednesday

SSI Informatics US 1 1 11:45 – 13:15

Performed by:

Piotr Copek

Introduction
This report explores the use of software tools to help with implementation of digital circuits. These
tools assist in minimizing logic functions using the Kazakov algorithm, implementing expressions
through MUX-DMUX structures, and creating solvable tables and functions for unsolvable SSTs.

Task 1

Prepare your own definition of one logic function to be minimised, satisfying the given
conditions:

number of inputs either 6 or 7
number of specified on conditions (elementary implicants): at least 5,
number of specified off conditions (elementary implicates): at least 5,
when minimised to SoP form, obtained products included in the minimised outcome cannot be
single-variable products, and after minimisation none of the input variables can be reduced (they
all must still be present in the obtained minimised expression)

Minimise the function with the software implementation of Kazakov algorithm

Solution

To obtain desired solution I used the following tool:

http://zmitacsim.zmitac.aei.polsl.pl/Kazakov/Page1.aspx

I entered the following function of six variables into the input:

Documentation made through the working process with software:

F = ​{
(3, 7, 13, 19, 29, 37, 43) ​∑ x ​x ​x ​x ​x ​x ​5 4 3 2 1 0

(2, 5, 11, 17, 23, 31, 41) ​∏ x ​x ​x ​x ​x ​x ​5 4 3 2 1 0

http://zmitacsim.zmitac.aei.polsl.pl/Kazakov/Page1.aspx

Figure 1 - Step 1

Figure 2 - Step 2

file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08

Figure 3 - Step 3

Figure 4 - Step 4

file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08

Figure 5 - Step 5

Figure 6 - Step 6

file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08

Figure 7 - Step 7

Figure 8 - Step 8

file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08

Figure 9 - Step 9

Figure 10 - Step 10

Figure 11 - Final result

file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08
file:///C:/Users/piotr/Documents/Studies/Sem_03/DCT/lab_08

The function obtained with the use of the software looks following:

Task 2

Copy the minimized logic expression obtained from the Kazakov algorithm as the
input definition of the function to be implemented using multiplexer and demultiplexer
elements. Then, with the assistance of MUX-DMUX software, produce the following
solutions:

16-bit MUX + gates
8-bit MUX + gates
4-bit MUX + gates
Two different DMUX-MUX structures
A tree of 4-bit MUX modules

Note: When adding gates, use only those available in the laboratory (NANDs or NORs).

Solution

Minimised logic expression obtained from previous task:

I entered the minimised function to the program using following steps:

F = ​ ​ ​x ​ +x ​1 x ​2 x ​3 5 ​ x ​x ​ +x ​1 3 4 ​x ​ ​ +x ​0 2x ​4 x ​ ​x ​ +1x ​3 4 x ​ ​ +0x ​2 x ​x ​0 4

F = ​ ​ ​x ​ +x ​1 x ​2 x ​3 5 ​ x ​x ​ +x ​1 3 4 ​x ​ ​ +x ​0 2x ​4 x ​ ​x ​ +1x ​3 4 x ​ ​ +0x ​2 x ​x ​0 4

File → New function → Literal representation

Next I putted the expression to the dialog input using ~ as negation

a) 16-bit MUX + gates

Figure 12 - Software output after selecting and selecting for
 and checking and selecting in .

Realization → Multiplexer 16
Multiplexer s size′ use gates NANDs only Gates

b) 8-bit MUX + gates

Figure 13 - Software output after selecting and selecting for
 and checking and selecting in .

Realization → Multiplexer 8
Multiplexer s size′ use gates NANDs only Gates

c) 4-bit MUX + gates

Figure 14 - Software output after selecting and selecting for
 and checking and selecting in .

Realization → Multiplexer 4
Multiplexer s size′ use gates NANDs only Gates

d) two different DMUX-MUX structures

Figure 15 - Software output after selecting
 and selecting for

 and .

Realization →
Multiplexer and Demultiplexer 8
Multiplexer s size′ Demultiplexer s size′

Figure 16 - Software output after selecting
 and selecting for and for

.

Realization →
Multiplexer and Demultiplexer 16 Multiplexer s size′ 4

Demultiplexer s size′

e) a tree of 4-bit MUX

Figure 17 - Software output after selecting and selecting
for . Worth notice that program replaced some 4-bit multiplexers with the

2-bit ones.

Realization → Multiplexer tree 4
Multiplexer s size′

Task 3
Prepare your own definition of a program for an asynchronous sequential circuit for which SST is
unsolvable without auxiliary state variables. List it as a switching sequence and provide this definition
to the software, then proceed through all steps of the design.

Solution
To obtain desired solution I used the following tool:

http://zmitacsim.zmitac.aei.polsl.pl/SST/Input/Input

I entered the following formula to the program:

x0+z+x1+z-x1-z+x0-x0+x1+x0-z-x1-

Documentation made through the working process with software:

Figure 18 - Step 1

Figure 19 - Step 2

http://zmitacsim.zmitac.aei.polsl.pl/SST/Input/Input

Figure 20 - Step 3

Figure 21 - Step 4

Figure 22 - Step 5

Figure 23 - Step 6; Final result

Functions read from the result table:

Summary

The software tools simplify handling complex digital circuit tasks, such as logic minimization, MUX-
DMUX implementation, and addressing asynchronous circuit challenges. They help validate the
correctness of solutions and are helpful in learning basics of digital circuit design and applications.

z = ​{ (1, 4, 5, 8, 12, 13, 15) ​∑ q ​zx ​x ​0 1 0

(3, 7, 9, 10, 14) ​∏ q ​zx ​x ​0 1 0

q ​ =0 ​{ (4, 8, 10, 12, 13, 14, 15) ​∑ q ​zx ​x ​0 1 0

(1, 3, 5, 7, 9) ​∏ q ​zx ​x ​0 1 0

