
Laboratory 4 - Transactions
Author: Piotr Copek

Date: 23.04.2025

Dirty Read
Check again what Transaction 2 sees. Did it read uncommitted data? How could this be
prevented?

[Figure 1] - Result before unrolling .

[Figure 2] - Result after unrolling .

Transaction 2 read uncommitted data of the temporary change student_name = 'TEST' , which
was later rolled back in Transaction 1.

To prevent this from happening we could set the isolation level to READ COMMITTED or higher.
This ensures a transaction only sees committed data.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Non-Repeatable Read
In which session did you set the READ COMMITTED isolation level and why? Did the
data read in Transaction 1 change between the first, second, and third query? If so, why
did that happen, and how could it be prevented?

[Figure 3] - Result after committing .

 READ COMMITTED should be set in Transaction 1 because it determines what that transaction
can "see". Transaction 2 doesn’t need this isolation level for the test.

Indeed the data changed after Transaction 2 committed its update.

To prevent this from happening we could use REPEATABLE READ isolation in Transaction 1 to
ensure consistent reads.

Phantom Reads
Did the new student appear in the results? Do you think this is correct? If not, what
would you propose to prevent it?

[Figure 4] - Result after committing the INSERT of the new student.

Indeed the new student student_id = 999 appeared in the second query in Transaction 1.

To prevent this from happening we could use SERIALIZABLE isolation to lock the range of rows
matching major_id = 1 , preventing inserts until Transaction 1 completes.

Deadlocks
What happened in step 5? Describe how to avoid deadlocks.

Deadlock indeed occurred. Transaction 1 held a lock on employee_id = 1 and waited for
 employee_id = 2 , while Transaction 2 held a lock on employee_id = 2 and waited for
 employee_id = 1 . MySQL detected this and aborted one transaction.

[Figure 5] - Warning about deadlock.

There are few things we could do to prevent this from happening:

• Always access tables in the same order.
• Implement retry logic in applications after deadlocks.
• Use short-lived transactions to reduce contention.

Blocking Reads
Does Transaction 2 wait? Does it see the changed value?

[Figure 6] - Values before committing.

[Figure 7] - Values after committing.

Were reads in Transaction 2 blocked? Do the results of queries (B) and (C) differ from
(A)? Test the same exercise with isolation levels: READ COMMITTED and
SERIALIZABLE. What are the differences?

At REPEATABLE READ :

• Transaction 2 waited until Transaction 1 committed.
• Query B during Transaction 1 showed the old value. Query C after commit showed the

updated value.

Isolation level differences:

• READ COMMITTED - Transaction 2 would see the new value immediately after Transaction 1
commits.

• SERIALIZABLE - Transaction 2 would wait until Transaction 1 completes, similar to
 REPEATABLE READ .

Using Various Isolation Levels for Transaction
Testing
What were the differences in the retrieved values? What caused them?

[Figure 8] - Schedule before inserting.

[Figure 9] - Schedule after committing insertion in Transaction 2.

Transaction 1 with READ COMMITTED - The second query saw the new row inserted by
Transaction 2 after committing.

Transaction 2 REPEATABLE READ - Would not see the new row if it re-read the data in the same
transaction.

 READ COMMITTED allows seeing committed changes from other transactions, while
 REPEATABLE READ maintains a snapshot.

	Laboratory 4 - Transactions
	Author: Piotr Copek
	Date: 23.04.2025
	Dirty Read
	Check again what Transaction 2 sees. Did it read uncommitted data? How could this be prevented?
	[Figure 1] - Result before unrolling.
	[Figure 2] - Result after unrolling.

	Non-Repeatable Read
	In which session did you set the READ COMMITTED isolation level and why? Did the data read in Transaction 1 change between the first, second, and third query? If so, why did that happen, and how could it be prevented?
	[Figure 3] - Result after committing.

	Phantom Reads
	Did the new student appear in the results? Do you think this is correct? If not, what would you propose to prevent it?
	[Figure 4] - Result after committing the INSERT of the new student.

	Deadlocks
	What happened in step 5? Describe how to avoid deadlocks.
	[Figure 5] - Warning about deadlock.

	Blocking Reads
	Does Transaction 2 wait? Does it see the changed value?
	[Figure 6] - Values before committing.
	[Figure 7] - Values after committing.
	Were reads in Transaction 2 blocked? Do the results of queries (B) and (C) differ from (A)? Test the same exercise with isolation levels: READ COMMITTED and SERIALIZABLE. What are the differences?

	Using Various Isolation Levels for Transaction Testing
	What were the differences in the retrieved values? What caused them?
	[Figure 8] - Schedule before inserting.
	[Figure 9] - Schedule after committing insertion in Transaction 2.

