Laboratory 4 - Transactions

Author: Piotr Copek

Date: 23.04.2025

Dirty Read

Check again what Transaction 2 sees. Did it read uncommitted data? How could this be
prevented?

STUDENT_ID STUDENT_MAME DATE_OF_BIRTH GENDER. MAJOR_ID
1 TEST 1968-09-13 00:00:00 M 2

[Figure 1] - Result before unrolling .

STUDENT_ID STUDENT_MNAME DATE_OF_BIRTH GENDER MAJOR_ID
1 MARSHAL 1968-09-1300:00:00 M 2

[Figure 2] - Result after unrolling .

Transaction 2 read uncommitted data of the temporary change student_name = 'TEST' , which

was later rolled back in Transaction 1.

To prevent this from happening we could set the isolation level to READ cOMMITTED or higher.

This ensures a transaction only sees committed data.



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


Non-Repeatable Read

In which session did you set the READ COMMITTED isolation level and why? Did the
data read in Transaction 1 change between the first, second, and third query? If so, why
did that happen, and how could it be prevented?

STUDENT_ID SUBJECT_ID PASS_DATE MEET CREDIT_EGZ GRADE
1 1 1999-01-0100:00:00 1 E 5
1 20 2000-04-04 00:00:00 1 E 5

[Figure 3] - Result after committing .

READ COMMITTED should be set in Transaction 1 because it determines what that transaction

can "see". Transaction 2 doesn’t need this isolation level for the test.
Indeed the data changed after Transaction 2 committed its update.

To prevent this from happening we could use REPEATABLE READ isolation in Transaction 1 to

ensure consistent reads.



Phantom Reads

Did the new student appear in the results? Do you think this is correct? If not, what
would you propose to prevent it?

STUDENT _ID STUDENT_NAME DATE_OF_BIRTH GENDER MAJOR_ID
3 CAR 1964-10-07 00:00:00 M 1
4 KRAUS 1968-05-03 00:00:00 M 1
7 CAT 1962-08-19 00:00:00 F 1
8 COLLEGE 1963-07-28 00:00:00 M 1
9 DOROT 1960-06-01 00:00:00 F 1
10 STOCK 1969-09-12 00:00:00 M 1
12 BLACK 1960-02-25 00:00:00 F 1
13 CASAN 1969-11-02 00:00:00 F 1
18 BIGG 1963-03-18 00:00:00 M 1
31 JULY 1967-05-04 00:00:00 M 1
33 FOX 1961-04-10 00:00:00 F 1
36 JANUARY 1966-03-15 00:00:00 M 1
37 TORUS 1964-09-17 00:00:00 F 1
33 GHOST 1962-02-19 00:00:00 M 1
48 BLACKLEG 1965-01-26 00:00:00 M 1
49 FISHER 1966-09-15 00:00:00 M 1
999 NOWY 2000-01-01 00:00:00 M 1

[Figure 4] - Result after committing the INSERT of the new student.

Indeed the new student student_id = 999 appeared in the second query in Transaction 1.

To prevent this from happening we could use SERIALIZABLE isolation to lock the range of rows
matching major_id = 1, preventing inserts until Transaction 1 completes.



Deadlocks

What happened in step 5? Describe how to avoid deadlocks.

Deadlock indeed occurred. Transaction 1 held a lock on employee id = 1 and waited for
employee_id = 2, while Transaction 2 held a lock on employee_id = 2 and waited for
employee_id = 1. MySQL detected this and aborted one transaction.

Error X

° SQL Error (1203): Lock wait timeout exceeded:; try
restarting transaction

[Figure 5] - Warning about deadlock.

There are few things we could do to prevent this from happening:

» Always access tables in the same order.
» Implement retry logic in applications after deadlocks.
» Use short-lived transactions to reduce contention.



Blocking Reads

Does Transaction 2 wait? Does it see the changed value?

EMPLOYEE_ID PROJECT_ID ACCOUNT_DATE PAY_DATE AMOUNT
1 1 1990-01-16 00:00:00 1990-01-17 00:00:00 420.0
1 4 1983-04-05 00:00:00 1983-04-06 00:00:00 320.0

1 | = A1FMOTY A AR AdamA@aah AMETTY A NS AT Aft N

[Figure 6] - Values before committing.

EMPLOYEE_ID PROJECT_ID ACCOUNT_DATE PAY_DATE AMOUNT
1 1 1990-01-16 00:00:00 1990-01-17 00:00:00 462.0
1 4 1983-04-0500:00:00 1983-04-06 00:00:00 352.0
1 £ 10R7NENAE NN 10RT_NE_NE MMM c20 N

[Figure 7] - Values after committing.

Were reads in Transaction 2 blocked? Do the results of queries (B) and (C) differ from
(A)? Test the same exercise with isolation levels: READ COMMITTED and
SERIALIZABLE. What are the differences?

At REPEATABLE READ :

» Transaction 2 waited until Transaction 1 committed.

« Query B during Transaction 1 showed the old value. Query C' after commit showed the
updated value.

Isolation level differences:

* READ COMMITTED - Transaction 2 would see the new value immediately after Transaction 1
commits.

e SERIALIZABLE - Transaction 2 would wait until Transaction 1 completes, similar to
REPEATABLE READ .



Using Various Isolation Levels for Transaction
Testing

What were the differences in the retrieved values? What caused them?

ROOM_ID DAY_OF WEEK START_TIME SUBJECT_ID EMPLOYEE_ID

[Figure 8] - Schedule before inserting.

ROOM_ID DAY _OF WEEK START_TIME SUBJECT_ID EMPLOYEE_ID
101 MOMN 10 5 3

[Figure 9] - Schedule after committing insertion in Transaction 2.

Transaction 1 with READ coMMITTED - The second query saw the new row inserted by
Transaction 2 after committing.

Transaction 2 REPEATABLE READ - Would not see the new row if it re-read the data in the same

transaction.

READ COMMITTED allows seeing committed changes from other transactions, while
REPEATABLE READ maintains a snapshot.



	Laboratory 4 - Transactions
	Author: Piotr Copek
	Date: 23.04.2025
	Dirty Read
	Check again what Transaction 2 sees. Did it read uncommitted data? How could this be prevented?
	[Figure 1] - Result before unrolling.
	[Figure 2] - Result after unrolling.

	Non-Repeatable Read
	In which session did you set the READ COMMITTED isolation level and why? Did the data read in Transaction 1 change between the first, second, and third query? If so, why did that happen, and how could it be prevented?
	[Figure 3] - Result after committing.

	Phantom Reads
	Did the new student appear in the results? Do you think this is correct? If not, what would you propose to prevent it?
	[Figure 4] - Result after committing the INSERT of the new student.

	Deadlocks
	What happened in step 5? Describe how to avoid deadlocks.
	[Figure 5] - Warning about deadlock.

	Blocking Reads
	Does Transaction 2 wait? Does it see the changed value?
	[Figure 6] - Values before committing.
	[Figure 7] - Values after committing.
	Were reads in Transaction 2 blocked? Do the results of queries (B) and (C) differ from (A)? Test the same exercise with isolation levels: READ COMMITTED and SERIALIZABLE. What are the differences?

	Using Various Isolation Levels for Transaction Testing
	What were the differences in the retrieved values? What caused them?
	[Figure 8] - Schedule before inserting.
	[Figure 9] - Schedule after committing insertion in Transaction 2.



