
Laboratory 3 - Creating database and permissions (DDL)
Author: Piotr Copek

Date: 16.04.2025

1. Connect to database UNIVERSITY as the root user

I connected to database using the same technic from 1st and 2nd laboratories.

2. Create new tables: teams1 and emp1 that satisfy the following
conditions:

• Table team1

CREATE TABLE teams1 (

name CHAR(30),

teamid SMALLINT PRIMARY KEY,

manid SMALLINT

) ENGINE=InnoDB;

• Table emp1

CREATE TABLE emp1 (

empid SMALLINT PRIMARY KEY,

gender CHAR(1),

birthdate DATETIME NOT NULL,

name CHAR(15) NOT NULL,

teamid SMALLINT,

INDEX (teamid)

) ENGINE=InnoDB;

3. Inserting data to the tables:

• Insert all rows from the table TEAMS into the table teams1 , using the INSERT command

INSERT INTO teams1 (name, teamid, manid)

SELECT TEAM_NAME, TEAM_ID, MANAGER_ID

FROM TEAMS;

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

• Insert all rows from the table EMPLOYEES to the table emp1 using the INSERT command

INSERT INTO emp1 SELECT * FROM EMPLOYEES;

4. Modify the tables as follows (keep the proper order)

a) In the table team1 should exist a foreign key on manid, which references to the primary key
in the emp1 table. Define the necessary constraints that deny deletion of a row in the emp1
table, if there are related rows in the team1 table

ALTER TABLE teams1

ADD CONSTRAINT fk_manid

FOREIGN KEY (manid) REFERENCES emp1(empid)

ON DELETE RESTRICT;

b) In the table emp1 should exist a foreign key on teamid, which references to primary key in
the team1 table. Define the necessary constraints that for any deletion of a row from the team1
table, the related rows of the emp1 table are set to null (in the foreign key).

ALTER TABLE emp1

ADD CONSTRAINT fk_teamid

FOREIGN KEY (teamid) REFERENCES teams1(teamid)

ON DELETE SET NULL;

c) Draw a diagram of the tables

Task 5. Check the created integrity constraints in the database. (insert
Null values, delete dependent/related rows, change values of a
primary key or a foreign key in a way that violates the integrity
constraints)

INSERT INTO emp1 (empid, birthdate) VALUES (100, '2000-01-01');

DELETE FROM emp1 WHERE empid = 1;

DELETE FROM teams1 WHERE teamid = 1;

Sets emp1.teamid to NULL for affected rows.

Task 6. Creating users and granting them privileges:

a) Connect to database as the root user: Create user user1@localhost with password user1

and grant him the SELECT privilege on the EMPLOYEES table.

CREATE USER 'user1'@'localhost' IDENTIFIED BY 'user1';

GRANT SELECT ON UNIVERSITY.EMPLOYEES TO 'user1'@'localhost';

b) Connect as user1 : Display the EMPLOYEES table

SELECT * FROM EMPLOYEES;

c) Try to drop the EMPLOYEES table as user1

DROP TABLE EMPLOYEES;

d) Display the SUBJECTS table as user1

SELECT * FROM SUBJECTS;

e) Connect as root: Grant the user1 user the delete privilege on the TEAMS table

GRANT DELETE ON UNIVERSITY.TEAMS TO 'user1'@'localhost';

f) Connect as user1 : Display the TEAMS table

SELECT * FROM TEAMS;

Forgot to make a screenshot. Fails because referenced by foreign key.

g) Drop the team with team_id=1

DELETE FROM TEAMS WHERE team_id = 1;

The user1 have permissions

h) Connect as root : Grant the user user1 the SELECT privilege on the TEAMS table.

GRANT SELECT ON UNIVERSITY.TEAMS TO 'user1'@'localhost';

i) Connect as user1 : Drop the team with team_id=1

DELETE FROM TEAMS WHERE team_id = 1;

j) Connect as root : Create the view called vCNETWORKS , which includes the employee ids and
names of these employees that belong to the team COMPUTER NETWORKS (data from original
tables EMPLOYEES and TEAMS).

CREATE VIEW vCNETWORKS AS

SELECT e.EMPLOYEE_ID AS empid, e.EMP_NAME AS name

FROM EMPLOYEES e

JOIN teams t ON e.TEAM_ID = t.TEAM_ID

WHERE t.TEAM_NAME = 'COMPUTER NETWORKS';

k) Grant the user1 user the SELECT privilege on the view vCNETWORKS

GRANT UPDATE ON UNIVERSITY.vCNETWORKS TO 'user1'@'localhost';

l) Connect as user1 : Display the vCNETWORKS view

SELECT * FROM vCNETWORKS;

m) Display the EMPLOYEES table

SELECT * FROM EMPLOYEES;

n) Update data using the vCNETWORKS view (try change name of a chosen employee)

UPDATE vCNETWORKS SET name = 'New Name' WHERE empid = 1;

Fails to update privilege on the view.

o) Connect as root : Grant the user1 user the UPDATE privilege on the vCNETWORKS view

GRANT UPDATE ON UNIVERSITY.vCNETWORKS TO 'user1'@'localhost';

p) Connect as user1: Update data using the vCNETWORKS view (try change name of chosen
employee)

UPDATE vCNETWORKS SET name = 'New Name' WHERE empid = 1;

Succeeds if the view is updatable and privileges are correct.

q) Connect as root : Update data using the vCNETWORKS view (try change name of chosen
employee)

UPDATE vCNETWORKS SET name = 'Root Name' WHERE empid = 1;

Succeeds: Root has full privileges.

r) Create the view vEMPS including the names of employees.

CREATE VIEW vEMPS AS SELECT emp_name FROM EMPLOYEES;

s) Connect as user1 : Update data using the vEMPS view (try change name of the employee)

UPDATE vEMPS SET name = 'Test' WHERE name = 'Old Name';

No UPDATE privilege on vEMPS .

t) Grant user1 user the SELECT and UPDATE privileges on the vEMPS view.

GRANT SELECT, UPDATE ON UNIVERSITY.vEMPS TO 'user1'@'localhost';

u) Connect as user1 : Update data using the view vEMPS (try change name of chosen
employee having a given id)

UPDATE vEMPS SET emp_name = 'New Name' WHERE emp_name = 'Old Name';

Succeeds if the view allows updates.

v) Update data again using the view vEMPS (try change name of chosen employee having a
given name)

UPDATE vEMPS SET emp_name = 'Another Name' WHERE emp_name = 'New Name';

Same situation as above.

w) Connect as root : Create user secnd@localhost with password secnd

CREATE USER 'scend'@'localhost' IDENTIFIED BY 'scend';

x) Grant the secnd user the SELECT privilege on the SUBJECTS table.

GRANT SELECT ON UNIVERSITY.SUBJECTS TO 'scend'@'localhost';

y) Connect as secnd : Display the SUBJECTS table

SELECT * FROM SUBJECTS;

z) Grant the user1 the SELECT privilege on the SUBJECTS table as secnd

GRANT SELECT ON UNIVERSITY.SUBJECTS TO 'user1'@'localhost';

User secnd lacks GRANT OPTION .

aa) Connect as root : Grant the secnd user the SELECT privilege on the SUBJECTS table with
grant option.

GRANT SELECT ON UNIVERSITY.SUBJECTS TO 'scend'@'localhost' WITH GRANT OPTION;

bb) Connect as secnd : Grant the user1 user the SELECT privilege on the SUBJECTS table

GRANT SELECT ON UNIVERSITY.SUBJECTS TO 'user1'@'localhost';

User scend now has GRANT OPTION.

cc) Connect as user1: Display the SUBJECTS table

SELECT * FROM SUBJECTS;

	Laboratory 3 - Creating database and permissions (DDL)
	Author: Piotr Copek
	Date: 16.04.2025
	1. Connect to database UNIVERSITY as the root user
	2. Create new tables: teams1 and emp1 that satisfy the following conditions:
	3. Inserting data to the tables:
	4. Modify the tables as follows (keep the proper order)
	Task 5. Check the created integrity constraints in the database. (insert Null values, delete dependent/related rows, change values of a primary key or a foreign key in a way that violates the integrity constraints)
	Task 6. Creating users and granting them privileges:

