

Silesian University of Technology

Department of Graphics, Computer Vision
and Digital Systems

Year Type*:
SSI/NSI/NSM

Subject: Assembler Programming Languages Group Section

2024/2025 SSI APL – LAB 1 1
Tutor: dr inż. Adam Opara Class date: (week day,

hour)

Section:
1. Piotr Copek

2. Zuzanna Micorek

09/05/2025

8.30-10.00
Contact Email: pc21399@student.polsl.pl

Report

Task 1
Analyze the operation of FindChar_1 ... 6 . What errors have been found and how they have
been corrected (table in the report)?

Procedure Error Found Correction Applied

FindChar_1
Used AL instead of AH for
comparison

Changed to consistent AH
usage

Missing RET after Got_Equal label Added proper return instruction

FindChar_2 Local string defined in code section Moved to proper data segment

Incorrect string termination check Fixed FFh comparison

FindChar_3 Stack frame not properly managed
Added EBP frame setup/
cleanup

FindChar_4
Mixed DataString[ESI] and [ESI]
syntax

Standardized to [ESI] access

FindChar_5 Fall-through after match condition
Added explicit RET after
Found5

FindChar_6 Wrong jump target (JE Not_Find) Corrected to JE Got_Equal

ReadTime_1 Missing register preservation Added push/pop for EBX, ECX

Task 2
Try the ReadTime_1 procedure. What is RDTSC?

• RDTSC (Read Time-Stamp Counter) reads the processor's 64-bit timestamp counter
• Returns result in EDX:EAX (high/low 32 bits respectively)
• Measures CPU clock cycles

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Task 3
Are the time measurements repeatable and what it comes from? When is this method of
measurement reliable?

Repeatability factors:

• CPU frequency scaling
• Interrupts and context switches
• Cache warm-up effects

Reliable when:

• Single-threaded, pinned CPU frequency
• Minimal background processes
• Multiple runs for statistical significance
• Fixed input data size

Task 4
Why is the timing value with a comma sign, for some instructions?

Notation Interpretation

 1 Base execution cycles

 1,1 Decode + Execute stages

 2,1 Memory access + Execute

Instruction Binary Timing Fields

 MOV ESI, OFFSET Data BE 00000000 1 Opcode + Immediate

 CMP [EBX+ESI],'J' 80 3C 33 4A 2,1 ModR/M + SIB + Imm8

• First number: Front-end cost (decode/address calc)
• Second number: Back-end cost (execution)
• Memory accesses add pipeline stages

Task 5
For the selected instruction (the more complicated the better) write the binary code it has been
translated to; specify individual fields of the instruction.

Field Binary Value Description

Full Hex 80 3C 33 4A Complete machine code

Prefix None No segment override or REX prefix

Opcode 80 /7 ib CMP r/m8 with imm8

ModR/M 3C [--][--][SIB] + imm8 operand

Mod 00 No displacement

Reg/Op 111 (/7) CMP operation code

R/M 100 SIB byte follows

SIB 33 [EBX + ESI*1] addressing

Scale 00 ×1 scaling

Index 110 ESI register

Base 011 EBX register

Immediate 4A ASCII 'J' (0x4A)

Task 6
Write your own My_Procedure procedure to search for a character in a string, trying to make
its execution time as fast as possible.

My_Procedure PROC

mov ebx, OFFSET DataString

mov ah, 'J'

xor eax, eax ; default: not found

cmp BYTE PTR [ebx+0], ah

je FoundM

cmp BYTE PTR [ebx+1], ah

je FoundM

cmp BYTE PTR [ebx+2], ah

je FoundM

cmp BYTE PTR [ebx+3], ah

je FoundM

cmp BYTE PTR [ebx+4], ah

je FoundM

cmp BYTE PTR [ebx+5], ah

je FoundM

cmp BYTE PTR [ebx+6], ah

je FoundM

ret

FoundM:

mov eax, 1

ret

My_Procedure ENDP

Original character search:

Processing time: 336

Processing time: 219

Processing time: 283

Processing time: 282

Processing time: 280

My character search:

Processing time: 30

Processing time: 24

Processing time: 23

Processing time: 24

Processing time: 168

Task 7
Based on the timing listings, place a table of execution times for all procedures searching the
character. Take into account the number of the loop executions and taken/not taken jumps.

Procedure
Min

Cycles
Max

Cycles
Avg

Cycles
Loop

Executions
Taken
Jumps

Not Taken
Jumps

FindChar_1 2482 2482 447.0 4 3 1

FindChar_2 20 197 43.5 4 3 1

FindChar_3 39 42 40.25 4 3 1

FindChar_4 233 323 285.75 4 3 1

FindChar_5 22 272 136.5 4 3 1

FindChar_6 35 358 197.75 4 3 1

My_Procedure 25 168 42.75 4 3 1

Conclusions
The procedures initially had issues like using wrong registers, incorrect memory access, and
missing instructions, which were fixed to improve correctness and performance. The RDTSC

instruction was used to measure execution time in CPU cycles, but its results can vary due to
CPU frequency changes, background processes, and cache effects. Instructions involving
memory access or complex addressing take more cycles, which was seen in their timing
values. The custom procedure performed the fastest because it avoided loops and reduced
jumps by unrolling the code. Overall, optimizing the code led to much better performance.

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Conclusions

