

Silesian University of Technology

Department of Graphics, Computer Vision
and Digital Systems

Year Type*:
SSI/NSI/NSM

Subject: Assembler Programming Languages Group Section

2024/2025 SSI APL – LAB 1 1
Tutor: dr inż. Adam Opara Class date: (week day,

hour)

Section: 1. Piotr Copek
 11/04/2025

 8.30-10.00
Contact Email: pc312199@student.polsl.pl

Report

Task 1
After setting up Visual Studio I created few breakpoints in mydll.asm to check if JAApp.cpp will
call it properly. Dll process was called successfully after adding full path of the JADll.lib to
the JAApp - Linker - Input - Additional Dependencies .

[Figure 1] - Debugger window paused on a selected command.

[Figure 2] - Stack window showing current function.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

[Figure 3] - The register window.

[Figure 4] - Memory window.

Task 2
I created simple flags triggering code, and called it dynamically in main function to obtain flags
results

MyProc2 proc

pushfq ; Save caller's FLAGS

xor rax, rax ; Clear RAX

; Trigger CF and AF

mov al, 0FFh

add al, 1 ; CF and AF

; Trigger ZF

sub al, al ; ZF

; Trigger SF

mov al, -1 ; SF

; Trigger PF

mov al, 0FEh ; Even parity - PF

; Trigger OF

mov al, 7Fh

add al, 1 ; OF

; Direction and interrupt flags

cld ; DF

; sti ; Needs more privileges

; Capture flags

pushfq

; Store final FLAGS in RAX

pop rax

; Restore caller's original FLAGS

popfq

ret

MyProc2 endp

Instruction Affected Flags Value

 add al, 1 CF 0

 mov al, 0FEh PF 0

 add al, 1 AF 1

 sub al, al ZF 0

 mov al, -1 SF 1

 add al, 1 OF 1

 cld DF 0

 sti IF 1

[Table 1] - Values of modified flags.

Instruction sti was omitted because it requires higher privileges to be executed.

Task 3

#include <windows.h>

#include <iostream>

typedef int(__fastcall* MYPROC1)(long long, long long);

typedef unsigned long long(__fastcall* MYPROC2)();

extern "C" int _fastcall MyProc1(long long x, long long y);

extern "C" unsigned long long _fastcall MyProc2();

int main()

{

HMODULE hDll = LoadLibrary(L"JADll.dll");

if (!hDll) {

std::cerr << "Failed to load DLL" << std::endl;

return 1;

}

MYPROC1 MyProc1 = (MYPROC1)GetProcAddress(hDll, "MyProc1");

if (!MyProc1) {

std::cerr << "Failed to find MyProc1" << std::endl;

FreeLibrary(hDll);

return 1;

}

MYPROC2 MyProc2 = (MYPROC2)GetProcAddress(hDll, "MyProc2");

if (!MyProc2) {

std::cerr << "Failed to find MyProc2" << std::endl;

return 1;

}

int x = 3, y = 4;

int z = MyProc1(x, y);

std::cout << "Result: " << z << std::endl;

unsigned long long flags = MyProc2();

std::cout << "Flags: 0x" << std::hex << flags << std::endl;

std::cout << "CF: " << ((flags >> 0) & 1) << std::endl;

std::cout << "PF: " << ((flags >> 2) & 1) << std::endl;

std::cout << "AF: " << ((flags >> 4) & 1) << std::endl;

std::cout << "ZF: " << ((flags >> 6) & 1) << std::endl;

std::cout << "SF: " << ((flags >> 7) & 1) << std::endl;

std::cout << "OF: " << ((flags >> 11) & 1) << std::endl;

std::cout << "DF: " << ((flags >> 10) & 1) << std::endl;

std::cout << "IF: " << ((flags >> 9) & 1) << std::endl;

FreeLibrary(hDll);

return 0;

}

Conclusions
Tasks demonstrated key aspects of assembly programming and debugging. The debugger
paused at the specified breakpoints in MyProc1, allowing observation of the call stack,
registers, and memory. MyProc2 procedure was designed to manipulate specific flags, of
which results were shown in the provided table (Table 1). Additionally MyProc2 was
dynamically loaded and called using LoadLibrary and GetProcAddress which highlighted
practical DLL usage in C++.

	Task 1
	[Figure 1] - Debugger window paused on a selected command.
	[Figure 2] - Stack window showing current function.
	[Figure 3] - The register window.
	[Figure 4] - Memory window.

	Task 2
	[Table 1] - Values of modified flags.

	Task 3
	Conclusions

