

Silesian University of Technology

Department of Graphics, Computer Vision
and Digital Systems

Year Type*:
SSI/NSI/NSM

Subject: Assembler Programming Languages Group Section

2024/2025 SSI APL – LAB 1 1
Tutor: dr inż. Adam Opara Class date: (week day,

hour)

Section:
1. Piotr Copek

2. Zuzanna Micorek

 27.06.2025

8.30 – 10.00
Contact Email: pc21339@student.polsl.pl

Report

Task 1
Create a solution with WPF main window and assembler DLL. The minimal functionality is
adding at least 2 double point values given by values within text boxes.

.DATA

.CODE

PUBLIC asmAddTwoDoubles

asmAddTwoDoubles PROC

; add scalar double in xmm0 and xmm1

addsd xmm0, xmm1

ret

asmAddTwoDoubles ENDP

END

[Figure 1] - Working application adding two double numbers.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

[Figure 2] - Screenshot from debug with breakpoint set in assembly code.

Task 2
Create a new function with more advanced functionality using SIMD computing the weighted
average of the four products given by the double and integer each.

weightedAverageSIMD PROC

vmovupd ymm0, ymmword ptr [rcx]

vcvtdq2pd ymm1, xmmword ptr [rdx]

vmulpd ymm2, ymm0, ymm1

vextractf128 xmm3, ymm2, 1

vaddpd xmm2, xmm2, xmm3

vhaddpd xmm2, xmm2, xmm2

vextractf128 xmm3, ymm1, 1

vaddpd xmm1, xmm1, xmm3

vhaddpd xmm1, xmm1, xmm1

vdivsd xmm0, xmm2, xmm1

ret

weightedAverageSIMD ENDP

1. vmovupd ymm0, ymmword ptr [rcx] – Loads 4 double-precision floats (weights) into ymm0

from memory at rcx .
2. vcvtdq2pd ymm1, xmmword ptr [rdx] – Converts 4 integers from memory at rdx to 4

double-precision floats and stores them in ymm1 (zero-extends to YMM).
3. vmulpd ymm2, ymm0, ymm1 – Multiplies weights (ymm0) and converted values (ymm1)

element-wise, storing the result in ymm2 .
4. vextractf128 xmm3, ymm2, 1 – Extracts the upper 128 bits of ymm2 into xmm3 .
5. vaddpd xmm2, xmm2, xmm3 – Adds the lower and upper halves of the product vector to sum

all products partially.
6. vhaddpd xmm2, xmm2, xmm2 – Horizontally adds to get the final sum of products in xmm2 .
7. Repeat steps 4–6 for ymm1 – Sums all weights.
8. vdivsd xmm0, xmm2, xmm1 – Divides the total weighted sum by the total weight to get the

weighted average.

Weighted Average =
∑i=1

4 weighti

∑i=1
4 valuei × weighti

[Figure 3] - Working application computing the weighted average of the four products.

[Figure 4] - Screenshot from debug with breakpoint set in assembly code.

Conclusions
The project demonstrates effective integration of assembly code with a WPF C# application.
Task one implemented double addition, while task two extended this to compute a weighted
average of four products combining doubles and integers. The solution shows performance
benefits of SIMD.

	Task 1
	[Figure 1] - Working application adding two double numbers.
	[Figure 2] - Screenshot from debug with breakpoint set in assembly code.

	Task 2
	[Figure 3] - Working application computing the weighted average of the four products.
	[Figure 4] - Screenshot from debug with breakpoint set in assembly code.

	Conclusions

