

Silesian University of Technology

Department of Graphics, Computer Vision

Year Type*:
SSI/NSI/NSM

2024/2025 SSI

Tutor: dr

Section:

Contact Email: p

Silesian University of Technology

Department of Graphics, Computer Vision
and Digital Systems

Subject: Assembler Programming Languages

APL – LAB

dr inż. Adam Opara

1. Piotr Copek
2. Zuzanna Micorek

pc21339@student.polsl.pl

Report

Group Section

 1 1
Class date: (week day,

hour)

06/06/2025

8.30 – 10.00

Task 1
Create procedure CheckSSECpp returning 1 if procesor supports SSE .

extern "C" int CheckSSECpp() {

int cpuInfo[4];

__cpuid(cpuInfo, 1);

return (cpuInfo[3] & (1 << 25)) ? 1 : 0;

}

 CheckSSECpp uses the C++ intrinsic __cpuid() to check if the processor supports SSE

(Streaming SIMD Extensions). When __cpuid is called with EAX=1 , bit 25 of EDX in the
returned cpuInfo array indicates whether SSE is available. The function returns 1 if SSE is
supported, otherwise 0.

Task 2
Create an assembly DLL with a procedure CheckSSEAsm checking availability of SSE
instructions, and with RadToDegAsm function.

.code

PUBLIC CheckSSEAsm

PUBLIC RadToDegAsm

CheckSSEAsm PROC

mov eax, 1

cpuid

bt edx, 25 ; check SSE bit (bit 25 in EDX)

setc al ; set AL = 1 if bit was set

movzx eax, al ; zero-extend to full EAX

ret

CheckSSEAsm ENDP

 CheckSSEAsm is a pure x64 assembly implementation that uses the cpuid instruction to query
processor features. It sets EAX to 1 and executes cpuid , then checks bit 25 of EDX using bt .
If the bit is set (SSE supported), the result is 1, otherwise 0.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

RadToDegAsm PROC

movsd xmm1, qword ptr [dbl180]

movsd xmm2, qword ptr [dblPI]

divsd xmm1, xmm2

mulsd xmm0, xmm1

movsd qword ptr [tempDeg], xmm0

cvttsd2si rax, xmm0

cvtsi2sd xmm3, rax

subsd xmm0, xmm3

movsd xmm4, qword ptr [dbl60]

mulsd xmm0, xmm4

imul rax, 100

cvtsi2sd xmm3, rax

addsd xmm0, xmm3

ret

RadToDegAsm ENDP

.data

dblPI REAL8 3.141592653589793

dbl180 REAL8 180.0

dbl60 REAL8 60.0

tempDeg REAL8 0.0

END

 RadToDegAsm is a SIMD-based function written in x64 assembly using SSE2 (xmm registers). It
converts an angle in radians to the NMEA coordinate format (DDDMM.mmmm), used in GPS.

Procedure:

• multiplies the input radians by
π

180 to get degrees
• splits degrees into integer and fractional parts
• converts the fractional part to minutes
• returns the final result as intDeg × 100 + minutes

All calculations use floating-point SIMD registers (xmm0 - xmm4).

Task 3
Create procedure RadToDegCpp in C++ .

extern "C" double RadToDegCpp(double radians, int sseEnabled) {

double dDeg = 0.0;

if (sseEnabled) {

__m128d ma, mb, mDeg, mx, my, mz, mk;

ma = _mm_set_sd(180.0);

mb = _mm_set_sd(3.141592653589793);

mDeg = _mm_div_pd(ma, mb);

ma = _mm_set_sd(radians);

mb = _mm_mul_pd(ma, mDeg);

dDeg = mb.m128d_f64[0];

int nDeg = (int)dDeg;

double dRem = dDeg - nDeg;

ma = _mm_set_sd(100.0);

mb = _mm_set_sd(60.0);

mx = _mm_set_sd(dRem);

mz = _mm_mul_pd(mx, mb);

mk = _mm_set_sd(nDeg * 100.0);

my = _mm_add_pd(mk, mz);

return my.m128d_f64[0];

} else {

double dDeg = radians * 180.0 / 3.141592653589793;

int nDeg = (int)dDeg;

double dRem = dDeg - nDeg;

return nDeg * 100.0 + dRem * 60.0;

}

}

 RadToDegCpp performs the same conversion from radians to NMEA degrees format as the
assembly version, but in C++ . It supports two modes:

• SSE2 mode: uses _mm_set_sd , _mm_div_pd , _mm_mul_pd , and other intrinsics to perform
vectorized floating-point math.

• Fallback mode: if SSE is not available, the calculation is done using standard scalar
operations.

Task 4
Compile and run an application that calls procedures CheckSSExxx and RadToDegxxx .

Conclusions
In this lab, I learned how to detect SSE support using both C++ and x64 Assembly. The SSE
detection worked correctly in both languages, and the conversion produced accurate results.
Writing SIMD code in Assembly was more complex, but it gave better control over registers.
This lab helped me understand how modern CPUs handle floating-point operations efficiently.

	Task 1
	Task 2
	Task 3
	Task 4
	Conclusions

